Semplici note per essere subito operativi col programma MPLAB della Microchip A cura del prof. Giuseppe SPALIERNO – docente di Sistemi Elettronici Automatici presso I.T.T. "M. Panetti" – BARI – aprile 2012

È un ambiente integrato che consente di scrivere, assemblare e simulare un programma per microcontrollori della Microchip tra cui il famoso PIC 16F84A. Si descrivono le fasi da compiere dopo aver installato correttamente il programma.

1) per incominciare a scrivere un programma sorgente: File / New

Per avere le linee numerate: Edit/Proprietà/Editor/Line number.

Per salvare: File/Salva ed inserire il nome del file e l'estensione ASM; esempio: proval.asm

2) prima di assemblare: Project/Project wizard

step 1: Device: scegliere PIC16F84A

step 2: Selezionare come language tool suite: MPASM Assembler

step 3: Nome progetto: prova1, crea una nuova cartella dove vuoi col nome che vuoi: PICprg1 step 4: Aggiungi qualsiasi file esistente del tuo progetto (dovresti inserire <u>almeno</u> prova1.asm)

3) per assemblare: Project/Make (F10)

Se ci sono degli errori controllare in quali linee si sono verificati ed effettuare le correzioni, salvare il file ASM e ripetere l'assemblaggio.

4) Durante la simulazione può essere utile tenere sotto controllo i valori dei registri speciali, le istruzioni del programma, ecc. per cui conviene accedere al menù **View**:

Disassembly per vedere le istruzioni in linguaggio assembly che contengono indirizzi numerici per rappresentare i registri speciali ed i bit specifici

Program memory per vedere linee, indirizzo, codice hex, disassembly del programma sorgente **File register** per visualizzare il contenuto della memoria RAM

Special Function Register per visualizzare il contenuto dei registri speciali, TRIS, PORT, PCL, TIMER, STATUS, OPTION, ecc.

5) Per la simulazione occorre far riferimento al menù **Debugger**:

Scegliere il simulatore: Select Tool/Mplab SIM

Per eseguire il programma: Run

Per l'esecuzione con animazione: Animate

Per eseguire una istruzione per volta: **Step into**

Per abilitare un breakpoint: **doppio click sul numero di istruzione** (ripetere doppio click per disabilitare il breakpoint). È possibile inserire più breakpoint.

Per inserire gli input durante la simulazione: Debugger/Stimulus/New Workbook

- Dalla scheda "Asynch": click nella casella PIN e scegliere lalinea di ingresso
- Nella casella "Action" spesso conviene scegliere "toggle" per cambiare stato al pin scelto ad ogni click di mouse durante la simulazione
- Compilare altre righe se ci sono altri PIN di ingresso (per personalizzazioni più spinte consultare il manuale)

6) Se la simulazione ha avuto buon esito si passa alla **programmazione reale del PIC**

- a. Inserire il PIC sullo zoccolo presente nel circuito programmatore
- b. Collegare il circuito programmatore alla porta seriale del PC
- c. Lanciare il programma che consente la programmazione del PIC
- d. Configurare e controllare se tutto è OK
- e. Eseguire il comando di programmazione del PIC

7) Rimuovere il PIC dallo zoccolo della scheda programmatrice e collocarlo su breadboard inserendo il quarzo e l'elettronica di I/O. Alimentare il PIC con Vdd=+5V e ..buona fortuna!!