Limitatore di precisione a ponte di Graetz

In fig.1 si mostra lo schema elettrico di un limitatore di precisione a ponte di Graetz.

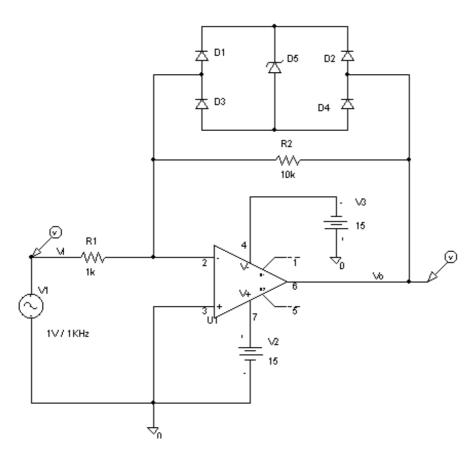


Fig. 1 Limitatore di precisione a ponte di Graetz.

Per $V_i > 0$ l'uscita è negativa. Se $V_i > V_{IH}$ con, $V_{IH} = -V_{OL} \cdot R_1/R_2$, il circuito di limitazione entra in funzione portando in conduzione, oltre al diodo Zener, i diodi D1 e D4, per cui: $V_{OL} = -(V_z + 2V_d)$.

Per $V_i < 0$ l'uscita è positiva. Se $V_i < V_{IL}$, con $V_{IL} = -V_{OH} \cdot R_1/R_2$, il circuito di limitazione porta in conduzione, oltre al diodo Zener, i diodi D2 e D3, per cui:

$$V_{OH} = +(V_z + 2V_d).$$

Per valori di V_i compresi tra V_{IL} e V_{IH} i diodi risultano interdetti e il circuito si comporta come un semplice invertitore a guadagno $A = -R_2/R_1$.

In fig.2 si mostra il risultato della simulazione a computer per il circuito precedente con $V_z=4.6~V$, segnale d'ingresso sinusoidale di ampiezza 1V e frequenza 1KHz ed amplificazione A=-10.

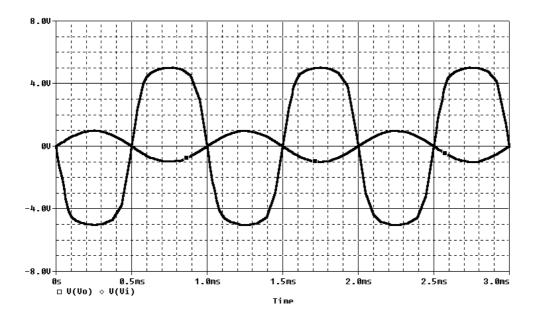


Fig. 2 Forme d'onda di ingresso e uscita per il limitatore a ponte di Graetz.

Si osservi che la limitazione è intorno a \pm ($V_z + 2V_d$) = \pm 5.8V. In assenza di circuito di limitazione l'ampiezza del segnale di uscita avrebbe raggiunto i 10 V.

Limitatore a due livelli regolabili

In fig.3 si riporta lo schema di un limitatore a due livelli V_{RH} e V_{RL} regolabili attraverso due potenziometri.

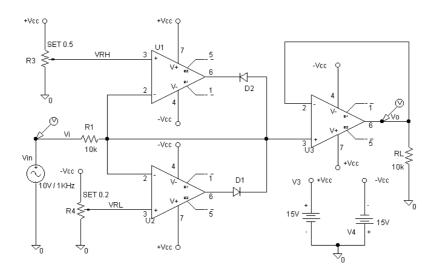


Fig. 3 Limitatore a due livelli regolabili.

L'operazionale d'uscita è in configurazione inseguitore e consente di rendere indipendente il funzionamento del circuito dal valore di $R_{\rm L}$.

Per $V_{RL} < V_i < V_{RH}$ i due diodi risultano interdetti e la tensione di ingresso V_i è trasferita in uscita inalterata.

Per $V_i < V_{RL}$ il diodo D1 è in conduzione per cui $V_p = V_n = V_{RL}$. In tal caso la tensione di uscita è limitata al valore $V_{OL} = V_{RL}$.

Per $V_i > V_{RH}$ il diodo D2 è in conduzione per cui $V_p = V_n = V_{RH}$. In tal caso la tensione di uscita è limitata al valore $V_{OH} = V_{RH}$.

Nella seguente fig.4 si mostrano le forme d'onda d'ingresso e di uscita per il limitatore a due livelli ottenute in simulazione al computer. Il segnale d'ingresso è stato scelto sinusoidale di ampiezza 10V e frequenza 1KHz. I livelli di limitazione sono stati regolati a $V_{RH} = 7.5V$ e $V_{RL} = -3V$.

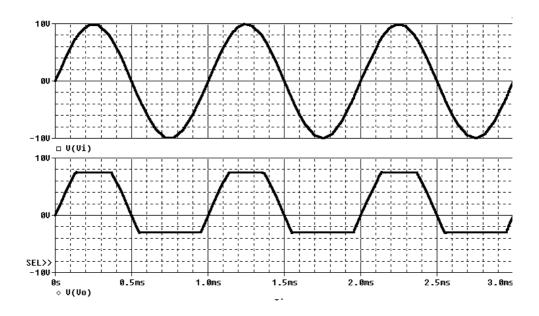


Fig 4 Forme d'onda relative al limitatore a due livelli regolabili.