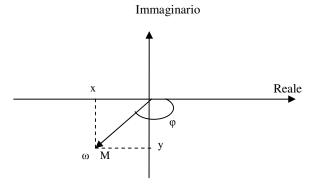
Realizzazione del diagramma di Nyquist per una generica f.d.t. realizzata in Excel

Sia assegnata la generica funzione di trasferimento:

$$G(j\omega) = K \cdot \frac{(j\omega)^{nzo} \cdot (1 + j\omega Tz_1) \cdot (1 + j\omega Tz_2) \cdot (1 + j\omega Tz_3) \cdot (1 + j\omega Tz_4)}{(j\omega)^{npo} \cdot (1 + j\omega Tp_1) \cdot (1 + j\omega Tp_2) \cdot (1 + j\omega Tp_3) \cdot (1 + j\omega Tp_4)}$$


ove:

nzo è il numero di zeri nell'origine npo è il numero di poli nell'origine Tz₁, Tz₂, Tz₃, Tz₄ sono le costanti di tempo a numeratore Tp₁, Tp₂, Tp₃, Tp₄ sono le costanti di tempo a denominatore

Le pulsazioni d'angolo ωz_1 , ωz_2 , ωz_3 , ωz_4 e ωp_1 , ωp_2 , ωp_3 , ωp_4 si calcolano eseguendo il reciproco delle relative costanti di tempi.

L'algoritmo che si vuol mettere in atto prevede la realizzazione di una tabella in cui ciascuna riga contiene una pulsazione ω che faremo variare da un valore sufficientemente piccolo (prossimo a 0) a un valore sufficientemente grande (prossimo a ∞), il modulo M della f.d.t, la fase ϕ , x, y. Avuti il modulo M e la fase ϕ si può disegnare un vettore nel piano complesso. La proiezione del vettore sull'asse reale mi darà la x e la proiezione sull'asse immaginario fornirà la y.

$$x = M \cdot \cos(\varphi)$$
$$y = M \cdot sen(\varphi)$$

Si realizza un grafico che fornirà y in funzione di x. Il modulo della f.d.t. vale:

$$|G(j\omega)| = M = K \cdot (\omega)^{nzo-npo} \cdot \sqrt{\frac{[(1 + (\omega Tz_1)^2] \cdot [(1 + (\omega Tz_2)^2] \cdot [(1 + (\omega Tz_3)^2] \cdot [(1 + (\omega Tz_4)^2] \cdot [(1 + (\omega Tp_1)^2] \cdot [(1 + (\omega Tp_1)^2] \cdot [(1 + (\omega Tp_3)^2] \cdot [(1 + (\omega Tp_4)^2] \cdot [(1 +$$

$$\varphi = 90 \cdot (nzo - npo) + \arctan(\omega T z_1) + \arctan(\omega T z_2) + \arctan(\omega T z_3) + \arctan(\omega T z_4) + \arctan(\omega T p_1) - \arctan(\omega T p_2) - \arctan(\omega T p_3) - \arctan(\omega T p_4)$$

La scelta dei valori di ω da inserire è critico. Si è deciso di iniziare dalla decima parte della più piccola pulsazione d'angolo degli zeri e dei poli e di terminare, dopo 100 valori, a 10 volte la più grande pulsazione d'angolo.

I valori dovranno essere:

$$0.1\omega_{min} \quad p^*0.1\omega_{min} \quad p^{2*}0.1\omega_{min} \quad p^{3*}0.1\omega_{min} \quad \dots \\ \qquad \qquad p^{100*}0.1\omega_{min} = 10 \ \omega_{max}$$

L'ultimo valore mi consente di determinare il passo moltiplicativo p:

$$p = \left(100 \cdot \frac{\omega_{\text{max}}}{\omega_{\text{min}}}\right)^{0.01}$$

Se, ad esempio, la f.d.t. presenta una costante K=5, un solo polo nell'origine, nessuno zero e due poli con costante di tempo $Tp_1=0.1s$ e $Tp_2=0.2s$ nella procedura Excel si dovranno inserire:

Tz1=0

Tz2=0

Tz3=0

Tz4=0

NZO=0

K=5

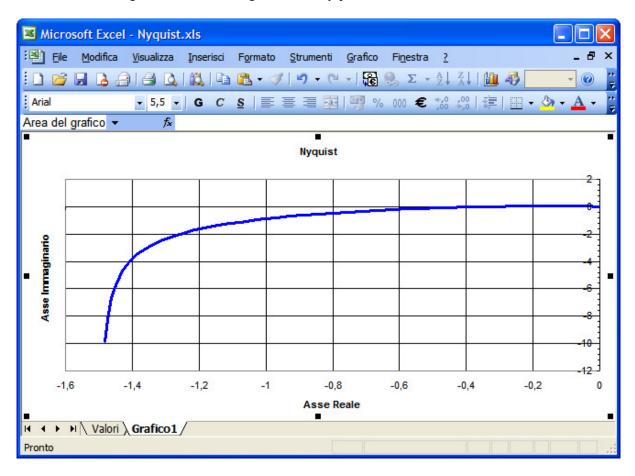
Tp1=0,1

Tp2=0,2

Tp3=0

Tp4=0

NPO=1


Nella seguente figura si mostra uno scorcio della tabella in cui sono evidenziate le formule. Il foglio è protetto da scrittura salvo le celle in giallo in cui inserire le costanti di tempo, il K ed il numero di zeri e poli eventuali nell'origine.

	C1 ▼ f _x							
	Α	В	С	D	E	F	G	Н
1	Diagramma di Nyquist							
2								
3	costanti di tempo		pulsazione	n.	w	Modulo	Fase	x
4	a numeratore			1	=wmin*0,1	=ASS(k)*E4^(NZO-NPC	=(NZO-NPO)*PI.GRE	=F4*COS(G4)
5	TZ1=	0	=SE(B5=0;"infin.";1/B5)	2	=E4*p	=ASS(k)*E5^(NZO-NPC	=(NZO-NPO)*PI.GRE	=F5*COS(G5)
6	TZ2=	0	=SE(B6=0;"infin.";1/B6)	3	=E5*p	=ASS(k)*E6^(NZO-NPC	=(NZO-NPO)*PI.GRE	=F6*COS(G6)
7	TZ3=	0	=SE(B7=0;"infin.";1/B7)	4	=E6*p	=ASS(k)*E7^(NZO-NPC	=(NZO-NPO)*PI.GRE	=F7*COS(G7)
8	TZ4=	0	=SE(B8=0;"infin.";1/B8)	5	=E7*p	=ASS(k)*E8^(NZO-NPC	=(NZO-NPO)*PI.GRE	=F8*COS(G8)
9	NZO=	0		6	=E8*p	=ASS(k)*E9^(NZO-NPC	=(NZO-NPO)*PI.GRE	=F9*COS(G9)
10	K=	5		7	=E9*p	=ASS(k)*E10^(NZO-NF	=(NZO-NPO)*PI.GRE	=F10*COS(G10)
11	a denominatore			8	=E10*p	=ASS(k)*E11^(NZO-NF	=(NZO-NPO)*PI.GRE	=F11*COS(G11)
12	TP1=	0,1	=SE(B12=0;"infin.";1/B12)	9	=E11*p	=ASS(k)*E12^(NZO-NF	=(NZO-NPO)*PI.GRE	=F12*COS(G12)
13	TP2=	0,2	=SE(B13=0;"infin.";1/B13)	10	=E12*p	=ASS(k)*E13^(NZO-NF	=(NZO-NPO)*PI.GRE	=F13*COS(G13)
14	TP3=	0	=SE(B14=0;"infin.";1/B14)	11	=E13*p	=ASS(k)*E14^(NZO-NF	=(NZO-NPO)*PI.GRE	=F14*COS(G14)
15	TP4=	0	=SE(B15=0;"infin.";1/B15)	12	=E14*p	=ASS(k)*E15^(NZO-NF	=(NZO-NPO)*PI.GRE	=F15*COS(G15)
16	NPO=	1		13	=E15*p	=ASS(k)*E16^(NZO-NF	=(NZO-NPO)*PI.GRE	=F16*COS(G16)
17				14	=E16*p	=ASS(k)*E17^(NZO-NF	=(NZO-NPO)*PI.GRE	=F17*COS(G17)
18		wmin	=MIN(C5:C15)	15	=E17*p	=ASS(k)*E18^(NZO-NF	=(NZO-NPO)*PI.GRE	=F18*COS(G18)
19		wmax	=MAX(C5:C15)	16	=E18*p	=ASS(k)*E19^(NZO-NF	=(NZO-NPO)*PI.GRE	=F19*COS(G19)
20		n	=100	17	=E19*p	=ASS(k)*E20^(NZO-NF	=(NZO-NPO)*PI.GRE	=F20*COS(G20)
21		passo	=(100*wmax/wmin)^(1/n)	18	=E20*p	=ASS(k)*E21^(NZO-NF	=(NZO-NPO)*PI.GRE	=F21*COS(G21)
22				19	=E21*p	=ASS(k)*E22^(NZO-NF	=(NZO-NPO)*PI.GRE	=F22*COS(G22)

Nella successive figura si mostrano i valori numerici assunti nelle celle precedenti.

							,,,		-	
	C1 ▼	f _x								
	Α	В	С	D	E	F	G	Н	1	
1	Diagramma di Nyquist									
2										
3	costanti di tempo		pulsazione	n.	w	Modulo	Fase	x	y	
4	a numeratore			1	0,5	9,9379572	-1,72042	-1,4814449	-9,82692	
5	TZ1=	0	infin.	2	0,527	9,4185945	-1,72852	-1,47939468	-9,30168	
6	TZ2=	0	infin.	3	0,556	8,9256898	-1,73705	-1,47712087	-8,80262	
7	TZ3=	0	infin.	4	0,586	8,4578611	-1,74604	-1,47459975	-8,32832	
8	TZ4=	0	infin.	5	0,618	8,0137972	-1,7555	-1,47180528	-7,87748	
9	NZO=	0		6	0,652	7,5922539	-1,76547	-1,46870884	-7,44884	
10	K=	5		7	0,687	7,1920508	-1,77597	-1,46527908	-7,0412	
11	a denominatore			8	0,725	6,8120677	-1,78702	-1,46148167	-6,65345	
12	TP1=	0,1	10	9	0,764	6,4512421	-1,79865	-1,4572791	-6,28449	
13	TP2=	0,2	5	10	0,805	6,1085657	-1,8109	-1,45263048	-5,93333	
14	TP3=	0	infin.	11	0,849	5,7830821	-1,82378	-1,44749133	-5,599	
15	TP4=	0	infin.	12	0,896	5,4738841	-1,83734	-1,44181338	-5,28059	
16	NPO=	1		13	0,944	5,1801112	-1,8516	-1,43554439	-4,97722	
17				14	0,996	4,9009476	-1,86659	-1,42862805	-4,6881	
18		wmin	5	15	1,05	4,6356197	-1,88235	-1,42100383	-4,41245	
19		wmax	10	16	1,107	4,3833943		-1,41260697	-4,14954	
20		n	100	17	1,167	4,1435772	-1,91632	-1,40336848	-3,89869	
21		passo	1,0544119	18	1,231	3,9155105	-1,93459	-1,39321531	-3,65926	
22				19	1,298	3,698572	-1,95377	-1,38207053	-3,43064	

Nella successiva figura si mostra il diagramma di Nyquist.

